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— @y (L) @12 (L) + P12(L) @2 (L) = 20n (32¢)

@2 (L) P11 (L) — P(L) B (L) = 0n. (32d)

If ®12(£) and @2 (£) are nonsingular, then (32¢) becomes Identity 3
and (32d) becomes Identity 4. Substituting these two identities
into (32a) and (32b) we obtain Identity 1 and Identity 2, respec-
tively. Note that Identities 1,2,3,4 do not rely on Z and ¥ being
symmetric.

IV. INCORPORATING THE TERMINATION NETWORKS

The desired end result in an analysis of transmission line behavior
is a determination of the voltages and currents along the line when
the line is driven by linear termination networks at the ends of the
line. For these purposes, we choose to characterize these linear
terininatiop networks by ‘‘generalized Thevenin equivalents’” as

V(0) = Ey — ZJ(0) (33a)
V() = Eg + ZeI(8) (33b)

where E, and Eg are n X 1 complex vectors of equivalent open
circuit port excitation voltages (with respect to the reference con-
ductor) and Z, and Zg are n X n complex symmetric impedance
matri¢es. The matrix chain parameters relate the voltages and
currents at the ends of the line as

V(L) = ®u(L)V(0) + ®:(L)I(0)
I(£) = Py (L) V(0) + ®n(L)I(0).

(34a)
(34b)

The objective now is to eliminate V(0) and V(&) from (33)
and (34) to yield a set of 2n equations in the 2n unknowns 7(0)
and I(£). Substituting (33a) into (34b) and rearranging yields the
first equation ‘ -

I(£) + (@2120 - ‘Dzz)l(o) = ll.)zlEo. (35)

The remaining equation can be obtained by substituting (33b)
into (34a) to yield

Ep + ZpI(£) = @uV(0) + @1I(0). (36)
Substituting from (34b)
V(O) = @21—11(53) — @21_1111221(0) (37)

into (36), rearranging and multiplying on the left by @z yields
(—®uZg + PuduPu™)I(L) + (PuP2 — PuDu®Pn'®n)I(0)

. = '1)21E£. (38)

Using Identity 2 and Identity 4in (38) yields

(®uZg — ®2)1(L) + 1(0) = —®uEg. (39)

Equations (35) and (39) can be arranged in matrix form as

(®nZy — ®n) 1, I1(0) Py Ep
= : (40}
1. (®nZo — ®w)_|| I(L) —@y Ep

which has a highly‘sparrse coefficient matrix with 2(n? — n) of the
total 4n? elements identically zero. Equation (40) can also be
solved explicitly for I(0) and I(£) as

{1, — (®aZp — @) (®uZ; — ®y) }1(0)
= —PyEs — ('1)2124? — ®p)®uE, (41a)
I(8) = — (®uZy — ®n)I(0) + @5 Eo (41b)

V(z) and I(z) at any point along the line can be found from (3)
once I(0) is obtained from the solution of (40) or (41a) and V(0)
is obtained from (33a). S
The identities have reduced the number of redundant matrix
multiplications and, moreover, only two of the four matrix chain
parameter submatrices are required to be computed; ®x and ®z
[see (15)]. Reducing the number of required matrix multiplications
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is an important consideration in numerical machine computation.
For example, n3 operations (multiplications or divisions) are required
to multiply two “full’”’ » X n matrices which is the minimum number
of operations required to invert a “full” n X n matrix [6]. The
solution of a set of n equations in n unknowns by Gauss elimination
requires n3/3 + n? — n/3 operations or n3/3 for large n [6 . Forming
@42, and ®yZg require 2n3 operations. Therefore, solution of (40)
requires on the order of (2n)%/3 + 2n® = 14n%/3 total operations
(neglecting the n? operations required to form ®xE, and @ Eg).
Solution of (41a) requires an additional n? operations for the multi-
plication of (®nZg — ®n) (®PuZ, — ®xu) and n® operations for the
multiplication of (®uZg — ®un)®n. Thus the total number of
operations required to solve (41) is on the order of n?/3 + 4n® =
13n%/3 operations. Therefore, it may be more efficient to solve (40)
rather than (41) since almost the same number of operations are
involved and the sparsity of (40) can be used to reduce the required
number of operations even further.

V. SUMMARY

Certain matrix identities among the submatrices of the chain
parameter matrix for multiconductor transmission lines have been
shown. The identities reduce to familiar results for the two-conductor
transmission line where the submatrices become complex scalars.
The order of multiplication of the submatrices must be carefully
adhered to for the multiconductor case since the various matrix
products do not in general commute. A set of matrix equations
which incorporate the termination networks for the' total solution
of the line currents was formulated. Using the matrix identities the
coefficient matrix was reduced to a highly sparse and efficient form.
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Green'’s Function in a Region with Inhomogeneous,
Isotropic Dielectric Media

MASANORI KOBAYASHI

Abstract—The reciprocity relation satisfied by the Green’s func-
tion for the inhomogeneous partial differential equation in a multi-
dielectric region with inhomogeneous, isotropic media is derived
by using Green’s theorem.

I. INTRODUCTION

The calculation of the parameters of a microstrip line based on a
TEM approximation is useful for the design of microwave integrated
circuit structures. The parameters often can be calculated by varia-
tional techniques using Green’s functions [17]-[5]; however, the
Green’s function satisfying the boundary conditions must be ob-
tained first.
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SHORT PAPERS

Recently, the validity of the reciprocity relation satisfied by the
Green’s function for Poisson’s equation in a two-dielectric region
containing homogeneous, isotropic media was pointed out [6]. On
the other hand, the reciprocity relation for the Green’s function in
a multidielectric region containing inhomogeneous, isotropic media
has not been discussed in the literature.

The purpose of this paper is to show that the reciprocity relation
for the Green’s function in such a region holds for the Dirichlet,
Neumann, and mixed problems by using Green’s theorem.

II. GREEN’S- THEOREM

In the three-dimensional space, consider the region R containing
the dielectric medium whose permittivity ¢(r) is a function of posi-
tion r and continuous with continuous first-order partial derivatives.
Let u (r) and w(r) be two scalar functions of position in the region R.
Applying the divergence theorem to the vector function e(r)u(r)-
vw (r), and using the method shown by Collin [5, p. 5567, we obtain
Green’s theorem

/f fu)veler)yvw(r)} —w@)v-{e(r)vu(r)}]de

R

=f/e(r) fu(r)Vvw(r) —wr)vu(r)}-nda (1)
s

where n denotes the unit vector of the external normal to the surface
8 enclosing the region E.

III. RECIPROCITY RELATION FOR
GREEN’S FUNCTIONS

Consider a p-dielectric region R in the three-dimensional space.
The region E enclosed by the surface 8 is composed of the regions
R;(i = 1,2,+++,p). Let the region R; be filled with the inhomogeneous,
isotropic dielectric medium of permittivity e(r), which is a function
with continuous first-order partial derivatives, and be bounded by
the surface S; which is piecewise smooth. Using the abbreviated
notation, the source point (Zo,Yo,20) Will be designated by 7o; the
observation point (z,y,2), by r; and the three-dimensional delta
function, by 3(r — 1o).

The Green’s function G(r;r;) which is used in calculating the
parameters of a microstrip line based on a TEM approximation
is defined as a solution of the three-dimensional inhomogeneous
partial differential equation modified the (3) in [2]

V-{e(r)VG} = — 8(r — 10) (2)
subject to the homogeneous boundary condition
D b
a®) (V@) n+8E)G =0 on 8,8 =8 -8 3
=1 =1

and the boundary conditions at the interfaces S;N 8;(¢,j =
1,2,++-,p, where ¢ # j)

G I 8iN8, reS, — G ’ 8iNS, Tes, (4)
a (1) (VG) N | s.ns,res, = — & (1) (V@) -0y | 5,084 res, (5)
where
To =71,G =G, =G(r;r,) whenr, € R;(¢ = 1,2,+++,p);
e(r) = e(r) whenr € R,(7 = 1,2,--+,p0);
n the unit vector of the external normal to S;

n; the unit vector of the external normal to 8,(7 = 1,2,-+-,p);
- the Dirichlet problem:
a(r) =0,8(r) #0on 8 (6).
the Neumann problem:

a(r) #0,8(r) =0on 8 (7
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the mixed problem:
a(ry £ 0,8(r) # 0on 8. (8)

Replacing % (r) by G: = G(r;r:), and w(r) by Gy = G(r;r) in
QGreen’s theorem (1), we obtain the following equation {or the region
Bu(m = 1,2,++4,p):

ff [G.V+ {en (1) VGr) — GV {en (1) VG:} ] do

Rm

= /f en (1) {G:VGy — GiVG.] snnda.  (9)

Sm
Substituting (2) into the left-hand side of (9) for :he region R:
yields G(r.;r). Let us denote the surface 8; — Z.(¢ # i), as 87 and
denote 8* = ,8¢ U p8% where

S (%0 = CJ (8: M 8;).

t=1; (5%1)
the surfaces .S* and sS¢ denote the subsurface of S*onwhicha(r) #0
and that on which g(r) = 0, respectively. The integrand in the
right-hand side of (9) for the region R; becomes zero on the surfaces
«S¢ and 8¢ from (4) and (5). Therefore, since the sutface integral
on S¢ becomes zero, (9) for the region R, becomes

G(ri;ry) = // &(r) (VG — GrVGy) +n; da. (10)

2, (540)
In a similar procedure, we obtain the following equations for the
regions Rx and B, (j = 1,2,+++,p, where j # ¢,k):

G(rry) = — // & (1) (G.VGr — GRVGy) +ny da (11)

(k)

0= /f & (1) (QVG, — GWVGs) eny da (F = 1,2,-++,p,j # 4,k).

2, (t75) (12)

Summing (12) over all j, and rearranging those surface integrals
by using (4) and (5), we obtain

/f & (1) (G, VG — GrVGy:) *n; da

3, (£74,k)

= — f/ e (1) (GiVGy — GuVGy) *ni da.  (13)

S (t7%0,k)

Adding the surface integral on S; N 8; to that in the left-hand side
of (13), and adding the surface integral on Sy N S; to that in the
right-hand side of (13) by using (4) and (5), we obtain the reciproc-
ity relation

G(rire) = G(ruri). (14)

Therefore, we find that the reciprocity relation (14) satisfied by
the Green’s function for the inhomogeneous partial diffarential equa~
tion (2) is valid for the boundary value problems (6)--(8).

IV. CONCLUSION

It has been presented that the reciprocity relation fcr the Green’s
function is valid for the Dirichlet, Neumann, and mixed problems.
The reciprocity relation obtained here will be useful in determining
the Green’s function for a microstrip transmission line with multi-
dielectric layers whose permittivities are functions of position. Fur-
ther work is in hand to calculate the parameters of such a microstrip
transmission line by the variational technique using Green’s func-
tion,
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On the Question of Computation of the Dyadic Green’s
Function at the Source Region in Waveguides and Cavities

Y. RAHMAT-SAMII

Abstract—The derivation of the dyadic Green’s function for rec-
tangular waveguides and cavities is approached systematically by
using the theory of distributions. It is shown that, in order to obtain

a complete solution for the field distribution in the entire structure,

one must add an additional term {o the classical expansion which is
valid only outside the source region.

I. INTRODUCTION

In a recent paper, Collin [1] has discussed the question of in-
completeness of the E and H modes in the source region of a wave-
guide, and has shown that an additional term must be added to the
classical representation of the field expression in order to derive
a complete solution that is valid both in the source and source-free
region of the waveguide. Tai [27] has also noted the difficulties in-
volved in the computation of the dyadic Green’s function, and has
presented a solution based upon the use of eigenvector functions
M and N. Neither of the preceding methods shares the simplicity of
the conventional techniques used in solving the source-free wave-
guide problems, nor gives a clear picture of removing the difficulties
involved in computing the dyadic Green’s function in the source
region. .

The purpose of this short paper is to develop a systematic and novel
approach for determining the dyadic Green’s function and, conse-
quently, the field distribution in the entire region of rectangular
waveguides and cavities. It is shown that if one carefully defines the
derivatives in the distribution sense and applies the correct complete-
ness property of the modes, it is then possible to construct the com-
plete solution for the entire structure just by employing the scalar
eigenfunctions of the Helmholtz equation.

II. COMPUTATION OF THE DYADIC GREEN’S
FUNCTION G, AND FIELD DISTRIBUTION
IN WAVEGUIDES

It is well known that the electric field excited by an electric current
source can be expressed in terms of the dyadic Green’s function
G.(r| 1) as
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E(r) = —jwp./ Ge(r|r)-J(r) dv'. 1)
4
One may notice from the preceding equation that care must be
exercised in deriving G.(r | 7’) at the source region if one wants to
perform. the preceding integration correctly. It is our purpose to
derive the correct G, in this section. The geometry of the problem
with dimensions a and b along = and y axes, respectively, is a perfectly
conducting rectangular waveguide aligned along the 2z axis and
excited by a finite-volume electric current source.
To attack the problem, we write the Maxwell’s equation and
necessary boundary conditions as

VX H=J+4 jocE

s in the waveguide (2a)

It

VXE —jopH

nXE =0, on the wall. (2b)

Tt is assumed that the waveguide is filled with a homogeneous and
isotropic material. In order to obtain the unique solution, the field
components must also satisfy the Sommerfeld radiation condition
along the z axis. From (2) one easily concludes that

v-H =0, in the waveguide (3a)

#-H =0, on the wall. (3b)

It is also trivial to show that £ and H fields can be separated as
follows: :

VXVXE—KE = —jou] (4a)

(4b)

In order to solve the preceding boundary-value problem, we intro-
duce the electric-type dyadic Green’s function G.(r|7’) and
magnetic-type dyadic Green’s function G (7| r") by the following
definitions:

VXVXH-—-FPH=VXJ

VX VX G — BC, = 15(r — ') L (B
AX G, =0, onthewall.”  (5b)
and /"/
VXVX Gy — kG, =V XIB(r—r) (6a)
7°Gm =0
, on the wall (6b)

AXVX Gn=0

where I is a unit dyadic. Notice that G, and G, are also subjected
to the Sommerfeld radiation condition as discussed by Tai [3].

The first equation of (2a) shows that the following relation holds
between G, and G:

kG, = V X G, — I6(r — ). (7)

Note that (1) can be derived by applying the Green’s theorem
between E and G., and by making use of the boundary and radiation
conditions.

The central issue regarding the completeness of modal representa~
tion of the dyadic Green’s function is that V-G, » 0 in the wave-
guide. That V-G, = 0 is evident if the divergence operator is
applied to both sides of (5a) and by recalling that V-16(r — 7') 0.
Since V-G, is not zero in the entire waveguide, G. cannot be con-
structed in terms of the superposition of E modes alone (see, for
instance, Goubau [4]). An additional term is necessary to obtain
the complete form of G.. In what follows, G, will be found by using
(7) after the complete form of G, is derived. It should be noted that
in contrast to Ge, G can be expressed in terms of H modes only,
since V- Gn = 0 everywhere. ’

In the following, a procedure is presented for constructing Gm
which is believed to be simpler than Tai’s method. Tai [2] used
eigenvector functions M and N, which are divergenceless vectors to
expand V X 18(r — r'), and then he constructed G. from (6a).

In our procedure, we use the fact that V-G, = 0and V X V X =



