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—%(S) *12(J3) + @12(t’)@22(&’) = non (32c)

%($3)%(s) — a922(J3)@21(s) = .0.. (32d)

If am (.Q) and%(s) are nonsingnlar, then (32c) becomes Identity 3

and (32d), becomes Identity 4. Substituting these two identities

into (32a) and (32b) we obtain Identity 1 and Identity 2, respec-

tively. Note that Identities 1,2,3,4 do not rely on Z and Y“being

symmetric.

IV. INCORPORATING THE TERMINATION NETWORKS

The desired end result in an analyeis of transmission line behavior

is a determination of the voltages and currents along the line when

theline isdriven bylinear termination networks atthe ends of the

line. .For these purposes, we choose to characterize these linear

termination networks by “generalized Thevenin equivalents” as

v(o) = Eo–zoz(o) (33a)

v(s) =E&+z~I(s) (33b)

where EO and ES are n X 1 complex vectors of equivalent open

circuit port excitation voltages (with respect to the reference con-

ductor) and ZO and 2$ are n Xn complex symmetric impedance

matrices. The matrix chain parameters relate the voltages and

curtents at the ends of the line as

v(s) =%(J3)V(0) +@lz(eE)z(o) (34a)

1(s) =m2, (J3)v(o) +%2(s) 1(0). (34b)

The objective now is to eliminate V(O) and Y(s) from (33)

and (34) to yield, a set of 2n equations in the 2n unknowns 2(0)

and Z(Q). Substituting (33ri) into (34b) and rearranging yields the

Iirst equation

1(s) + (@21zo– 4D22)I(0) = *21E0. (35)

The remaining equation can be obtained by substituting (33b)

into (34a) to yield’

E&+ z&z(s) =@,,V(o) +m,z(o).

Substituting from (34b)

v(o) = @2,-v(i3) – @21-m%2z(o)

into (36), rearranging andmultiplying onthe left by

(36)

(37)

*ZI yields

=@,,E&. (38)

Using Identity 2and Identity4in (38) yields

(’%,2$ –%)1(s) +1(0) = –@21EJ3. (39)

Equations (35) and (39) can rearranged inmatrix form as

[

(%20 – %2)

L ‘“ lEl=[-:J( 40)(tD,,z&- al,,)

which has a highly sparse coefficient matrix with 2(nl — n) of the

total 4n2 elements identically zero. Equation (40) can also be

solved explicitly for Z(0) and I(d3) as

{l. – (a%zJ3–a %2)(@ 2,zo–a Jd)z(o)

= —%EQ — (@J21zJ3 — @22)!m21E0 (41a)

z(s) = –(*212, – fD22)z(o) +921E0. (41b)

V(z) and Z(z) atanypoint along theline can be found from (3)

once Z(0) isobtained from the solution of (40) or (41a) and J-’(O)

is obtained from, (33a).

The identities have reduced the number of redundant matrix

multiplications and, moreover, only two of the four matrix chain

parameter submatrices are required to be computed; % and %

[see (15)]. Reducing thenumbei ofrequired matrix multiplications

is an important consideration in numerical machine computation.

For example, n’ operations (multiplications or divisions) are required

tomultiply two’’full”n Xnmatrices which isthe minimum number

of operations required to invert a “full” n X n matrix [6]. The

solution of a set of n equations inn unknowns by Gauss elimination

reqtiiresn3/3 +n2 — n/30perations orn3/3forlargen [6]. Forming

@z,Z,and@,,Z& require 2n`operations. Therefore, so1utionof (40)

requires on the order of (2r3)2/3 +2n3 = 14n~/3 total operations

(neglecting then20perations required to form %, EO and %Es).

Solution of (41a) requires anadditional n’operations forthe multi-

plication of (%2$ – %)(021Z0 – %2) andn’ operations for the

multiplication of (%2s — %2)%. Thus the total number of

operations required to solve (41) is on the order of n3/3 +4n? =

13n'/30perations. Therefore, itmaybe more efficient to solve (40)

rather than (41) since almost the same number of operations are

involved andthesparsityof (40) can beusedto reduce the required

number of operations even further.

V. SUMMARY

Certain matrix identities among the submatrices of the chain

parameter matrix for multicoryiuctor transmission lines have been

shown. The identities reduce to familiar results for the two-conductor

transmission line where the submatrices become complex scalars.

The order of multiplication of the submatrices must be carefully

adhered to for the multiconductor case since the various matrfi

products do not in general commute. A set of matrix equations

which incorporate the termination networks for thetotal solution

of the line currents was formulated. Using the matrix identities the

coefficient matrix was reduced to a highly sparse and efficient form.
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Green’s Function in a Region with Inhomogeneous,

Isotropic Dielectric Media

MASANORI KOBAYASHI

Abstract—The reciprocity relation satisfied by the Green’s func-
tion for the ighomogeneous partial dMere@ial equation in a multi-

dielectric region with inhomogeneous, isotropic media is derived

by using Green’s theorem.

I. INTRODUCTION

The calculation of the parameters of a microstrip line based on a

TEM approximation is useful for the design of microwave integrated

circuit structures. The parameters often can be calculated by varia-

tional techniques using Green’s functions [1 ]–[5]; however, the

Green’s function satisfying the boundary conditions must be ob-

tained first.
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SHORT PAPERS

Recently, thevalidltyof thereciprocity relation satisfied by the

Green’s function for Poisson’s equation in a two-dielectric region

containing homogeneous, isotropic media was pointed out [6]. On

the other hand, the reciprocity relation for the Green’s function in

a multidielectric region containing inhomogeneous, isotropic media

has not been discussed in the literature.

The purpose of this paper is to show that the reciprocity relation

for the Green’s function in such a region holds for the Dirichlet,

Neumann, andmixed problems by using Green’s theorem.

II. GREEN’S THEOREM

In the three-dimensional space, consider the region R containing

the dielectric medium whose permittivity e(r) is a function of posi-

tion r and continuous with continuous first-order partial derivatives.

Let u(Y) and w(r) be two scalar functions of position in the region R.

Applying the divergence theorem to the vector function c(r)u (r).

vw (r), and using the method shown by Collin [5, p. 556], we obtain

Green’s theorem

1//
[u(r) V.{. (r) Vw(r)) – r.u(r)V. {c(r) Vu(r) )]d~

R

——

//

e(r) {u(r) Vw(r) – w(r) Vu(r) }.ndd (1)

s

where n denotes the u nit vector of the external normal to the surface

~ enclosing the region R.

III. RECIPROCITY RELATION FOR

GREEN’S FUNCTIONS

Consider a p-dielectric region R in the three-dimensional space.

The region R enclosed by the surface S’ is composed of the regions

R; (i = 1,2,0. O,P). Let the region R; be filled with the inhomogeneous,

isottopic dielectric medium of permittivit y c(r), which is a function

with continuous first-order partial derivatives, and be bounded by

the surface & which is piecewise smooth. Using the abbreviated

notation, the source point (XO,YO,ZO)will be designated by ro; the

observation point (z, Y,z), by r; and the three-dimensional delta

function, by 8 (r – r,).

The Green’s function G (r;ro) which is used in calculating the

parameters of a microstrip line based on a TEM approximation

is defined as a solution of the three-dimensional inhomogeneous

partial differential equation modified the (3) in [2]

v.{~(r)vG) = – ~(r – YO) (2)

subject to the homogeneous boundary condition

a(r) (vG). n +p(r)G = O

and the boundary conditions

1,2,... ~P~ where i + ~)

G I s,fis, ,r,s,

e,(r) (vG) -n. I s,ns, ,ws, =

where

D P
on s,s=us,—n si (3)

$=1 i-l

at the interfaces i9i fl Sj (i,j =

= G I sins, ,rw, (4)

– ~, (r) (vG) “nj I s,nstms, (5)

r. = ri,G = G, = G(r;r,) when ro c Ri(i = 1,2,.0 .,p);

~(r) = Q(Y) when r 6 Rt(i = 1,2,”” “,??);
n the unit vector of the external normal to 6’;

n; the unit vector of the external normal to 6’, (i = 1,2,... ,p);

the Dirichlet problem:

a(r) = O,B(r) #Ooni3 (6).

the Neumann problem:

q(r) # O,@(r) = O on S’ (7)
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the mixed problem:

a(r) # O, ~(r) * Oon b’. (8)

Replacing u(r) by G{ = G(r;ri), and w(r) by G~ = G (r;rk) in

Green’s theorem (1), we obtain the following equation For the region

Rm(rn = 1,2) . . ..p) :

[/
[G,v. {.m(7)vG,) – G,v. {q(r) VGi)ldv

%

.
//

,m (r) {G,vG~ – G~vG,] .rk da. (9)

.%

Substituting (2) into the left-hand side of (9) for ~he region Ri

yields G (r.;rk). Let us denote the surface & – ~, ($ # i), M ~, and

denote iY = J+ U p~, where

~t(t #i) ~ ~ (sin m.
i=l; (A)

the surfaces afli and ~~ denote the subsurface of ~i on which a (r) # O

and that on which 6(r) # O, respectively. The integrand in the

right-hand side of (9) for the region R; becomes zero OD the surfaces

JS’~ and RN from (4) and (5). Therefore, since the surface integral

on N becomes zero, (9) for the region R, becomes

G (ri;rk) =
/!

●i (r) (G;vG~ — G~vGi) .m ia. (lo)

2, (t#;)

In a similar procedure, we obtain the following equations for the

regions Rk and RI (j = 1,2,. . .,p, where j # i,k):

G(r~;ri) = --
!/

et(r) (G,vG~ — G~vGi) .ni da (11)

zk(w%)

o=
// ~~(r) (G.vGk—GJVW% da (~= L%”o“)P)~ ~ itk).

z, (t?% (12)

Summing (12) over all j, and rearranging those sur’~ace integrals

by using (4) and (5), we obtain

/.
c,(r) (G, vG~ — G~vGi)” ni da

%(@%k)

._

//
e,(r) (GivG~ – G~vGi) “n, da. (13)

2~(@i,~)

Adding the surface integral on & n &to that in the left-hand side

of (13), and adding the surface integral on i% n & to that in the

right-hand side of (13) by using (4) and (5), we obtain the reciproc-

ity relation

G (ri;rk) = G (rk;ri). (14)

Therefore, we find that the reciprocity relation (14) satisfied by

the Green’s function for the inhomogeneous partial cliff erential equa-

tion (2) is valid for the boundary value problems (6)-(8).

Iv. CONCLUSION

It has been presented that the reciprocity relation fcr the Green’s

function is valid for the Dirichlet, Neumann, and mixed problems.

The reciprocity relation obtained here will be useful in determining

the Green’s function for a microstrip transmission line with multi-

dielectric layers whose permittivities are functions of position. Fur-

ther work is in hand to calculate the parameters of such a microstrip

transmission line by the variational technique using ‘Green’s func-

tion.
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On the Question of Computation of the Dyadic Green’s

Function at the Source Region in Waveguides and Cavities

Y. RAHMAT-SAMII

Abstracf—The derivation of the dyadic Green’s function for rec-

tangular waveguides and cavities is approached systematically by

using the theory of distributions. It is shown that, in order to obtain

a complete solution for the field distribution in the entire structure,

one must add an additional term to the classical expansion which is

valid only outside the source region.

I. INTRODUCTION

In a recent paper, Collin [1] has discussed the question of in-

completeness of the E and H modes in the source region of a wave-

guide, and has shown that an additional term must be added to the

classical representation of the field expression in order to derive

a complete solution that is valid both in the source and source-free

region of the waveguide. Tai [2] has also noted the difficulties in-

volved in the computation of the dyadic Green’s function, and hae

presented a solution based upon the use of eigenvector functions

lf and N. Neither of the preceding methods shares the simplicity of

the conventional techniques used in solving the source-free wave-

gnide probleme, nor gives a clear picture of removing the difficulties

involved in computing the dyadic Green’s function in the source

region.

The purpose of thk short paper is to develop a systematic and novel

approach for determining the dyadic Green’s function and, conse-

quently, the field distribution in the entire region of rectangular

waveguidee and cavities. It is shown that if one carefully defines the

derivatives in the distribution sense and applies the correct complete-

ness property of the modes, it is then possible to construct the com-

plete solution for the entire structure just by employing the scalar

eigenfunctions of the Helmholtz equation.

II. COMPUTATION OF THE DYADIC GREEN’S

FUNCTION G. AND FIELD DISTRIBUTION

IN WAVEGUIDES

It is well known that the electric field excited by an electric current

source can be expressed in terms of the dyadlc Green’s function

G.(r I r’) as
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E (7’) = –j.w
/

G,(r ] r’) .J(r’) d/. (1)

?

One may notice from the preceding equation that care must be

exercised in deriving G. (r I r’) at the source region if one wants to

perform the preceding integration correctly. It is our purpose to

derive the correct G. in this section. The geometry of the problem

with dmensions a and b along z and y axes, respectively, is a perfectly

conducting rectangular waveguide aligned along the z axis and

excited by a finite-volume electric current source.

To attack the problem, we write the Maxwell’s equation and

necessary boundary conditions as

}

vxH=J+jkleE

, in the waveguide (2a)

v x E = –juplf

;xE=O, on the wall. (2b)

It is assumed that the wavegnide is filled with a homogeneous and

isotropic material. In order to obtain the unique solution, the field

components must also satisfy the Sommerfeld radiation condition

along the z axis. From (2) one eaeily concludes that

v.~ = (), in the waveguide (3a)

A
?s.H = o, on the wall. (3b)

It is also trivial to show that E and H fields can be separated as

follows:

VXVXE–kWt=–jOPJ (4a)

VXVXH– RH=VXJ. (4b)

In order to solve the preceding boundary-value problem, we intro-

duce the electric-type dyadic Green’s function G, (r / r’) and

magnetic-type dyadlc Green’s function G~ (r I r’) by the following

definitions:

VXVXGe– l& G.=18(r– r’) ,, “ (5a)

~XG~=O, on the wall,. ” (5b)
,

and ,/’”

VXVX G~–fc’Gn = V X 16(r’– r’) (6a)
A

}

n. G~=O

? on the wall (6b)

~XVXG. =0

where I is a unit dyadic. Notice that G. and Gn are also subjected

to the Sommerfeld radiation condition ae discussed by Tai [3].

The first equation of (2a) shows that the following relation holds

between G% and G.:

k2GC = V X G~ – I$(r _ r~). (7)

Note that (1) can be derived by applying the Green’s theorem

between E and G., and by making use of the boundary and radiation

conditions.

The central issue regarding the completeness of modal representa-

tion of the dyadic Green’s function is that v. G. # O in the wave-

guide. That V. G. # O is evident if the divergence operator is

applied to both sides of (5a) and by recalling that v. B (r — r’) # O.
Shce V. G. is not zero in the entire waveguide, G. cannot be con-

structed in terms of the superposition of E modes alone (see, for

instance, Goubau [4]). An additional term is necessary to obtain

the complete form of G.. In what follows, G. will be found by using

(7) after the complete form of G~ is derived. It should be noted that

in contrast to G., G~ can be expressed in terms of H modes only,

since V. G~ = O everywhere.

In the following, a procedure is presented for constructing G~

which ‘is believed to be simpler than Tai’s method. Tai [2] used

eigenvector functions ill and N, which are dlvergencelees vectors to

expand v x [13(r — r’), and then he constructed G- from (6a).
In our procedure, we use the fact that V. G~ = O and V X V X =


